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terium exchange at the 5 position by the catalysis with 
cysteine (Figure 1). This fact together with the pD-
rate profiles shown in Figure 1 indicate that the reaction 
involves the unprotonated form of uridine and the 
mercapto anion as the reactive species (pA"a values for 
H3+NCH2CH(COO-)SH <± H3+NCH2CH(COO-)S~ 
and HOCH2CH1SH <=> HOCH2CH2S- are 8.712 and 
9.4, ,3 respectively). A cationic amino group at the /3 
position of the SH in the molecule facilitates the dis­
sociation of the SH, thereby making the compound 
more effective than other mercaptans such as 2-mer-
captoethanol at a rather lower pH region. Further­
more, when the effectiveness of cysteine was compared 
with that of 2-mercaptoethanol at pD 10.0 where the 
SH of either reagent mostly dissociates, the per cent 
H exchange found for 3-methyluridine by 24-hr incuba­
tion was 38.5% with 0.5 M cysteine, and only 9.9% 
with 0.5 M 2-mercaptoethanol. Therefore, the amino 
group itself appears to play a role in the catalysis. 
This seems reasonable in view of the recent finding of 
an accelerating effect of amines on the bisulfite-cat-
alyzed hydrogen isotope exchange at position 5 of 
uridine.3 The effect of supplemented trialkylamines 
on the cysteine catalysis at pD 9.0 was investigated and 
a marked accelerating effect was observed: [catalyst], 
Ar0bsd at 37° (hr-1), [1.0 M trimethylamine + 0.5 M 
cysteine], 7.67 X 10"2; [1.0 M triethylamine + 0.5 M 
cysteine], 4.04 X 10-2. In analogy to the established 
mechanism of the bisulfite-amine catalysis of the hy­
drogen isotope exchange of uridine, the cysteine reac­
tion may be represented as illustrated in Scheme I. A 
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possible way of the action of an amine is to shift the 
equilibrium, 1 <=± 2, to the adduct side, for it is known 
that amines shift the equilibrium, uridine *± 5,6-dihy-
drouridine 6-sulfonate, to the adduct side.3 The fact 
that the increase of the concentration of cysteine results 
in a greater increase in the exchange rate than that ex­
pected from the first-order kinetics (see above) is con­
sistent with the participation of a second molecule of 
cysteine (as an amine) in the rate determining step. 
Another possible role of the amino group of cysteine is 
to abstract the hydrogen at position 5 of 2, conceivably 
through an intramolecular process. Trimethylamine 
supplemented to 2-mercaptoethanol did enhance the 
rate of the exchange, but the enhanced rate was still 
considerably smaller than that observed for the catalysis 
by the cysteine type compound having an intramolec­
ular amino group. Thus, the A:0bsd values at pD 9.5 
and 37° were 0.251 X lO"2 hr-1 with 0.5 M trimethyl­
amine + 0.5 M 2-mercaptoethanol and 0.151 X 10~2 

hr - 1 with 0.5 M 2-mercaptoethanol (see also Figure 1). 
Furthermore, in consistency with the proposed mech­
anism, either iV-acetylcysteine or S-methylcysteine, or 
an equimolar mixture of the two agents, was essentially 
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ineffective as the catalyst. Glutathione (0.3 M) was 
not effective at 37° and pD 9, in contrast to the reported 
catalytic effect at 80°.4 

Based on the glutathione experiment, Kalman4 has 
suggested a mechanism for thymidylate synthetase 
which involves intermediary formation of a 5,6-dihy-
drouracil-6-mercapto compound by the addition of an 
enzyme SH group, which is known to be essential for 
the enzymic action,14 across the 5,6-double bond of 
uracil. Recently, Santi and Sakai15 have proposed the 
presence of an amino group at the active site of this 
enzyme on the basis of inhibition by 5-formyl-2'-de-
oxyuridylic acid. The above-described finding of a 
cooperative function of the SH and the amino groups 
in cysteine demonstrates that such enzymic mechanism 
is possible. 
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An Active-Site Titrant for Arylsulfate Sulfohydrolase 

Sir: 
A dearth of knowledge exists concerning the nature 

of the active sites of arylsulfate sulfohydrolases as well 
as their physiological significance. 1^ We report herein 
data to implicate o-nitrophenyl oxalate as the first 
known active-site titrant for arylsulfate sulfohydrolase 
II (EC 3.1.6.1) from Asper. oryzae. 

Titration of the enzymatic active site with o-nitro­
phenyl oxalate3 was determined by assaying for residual 
activity with 2-chloro-4-nitrophenyl and/or p-nitro-
phenyl sulfate as substrates in 0.4 M acetate buffer, pH 
4.8, 37°. Sedimentation equilibrium measurements 
and gel electrophoresis indicate that the enzyme is a 
dimer composed of two identical subunits of ca. 
45,000 molecular weight.4 Extrapolation of residual 
activity as a function of inhibitor concentration reveals 
that completely inactivated protein has a 2.1:1 o-nitro­
phenyl oxalate: arylsulfate sulfohydrolase stoichiom-
etry (Figure 1). 

Further experiments show that a competitive re­
versible inhibitor, /?-nitrophenyl phosphate,1 will pro­
tect against inactivation caused by o-nitrophenyl oxalate 
(Figure 2). The time-dependent loss of enzymatic 
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Figure 1. The activity of arylsulfate sulfohydrolase II inhibited 
by varying amounts of o-nitrophenyl oxalate as a function of the 
ratio of inhibitor per enzyme. The protein5 (homogenous by disc 
gel electrophoresis and equilibrium ultracentrifugation criterion, 
specific activity = 0.7 unit/mg) was incubated with varying amounts 
of the oxalate ester for 20 hr at 4 °. 

activity as a variation of the concentration of the phos­
phate ester is characteristic of the minimal scheme 

EI2 
ki2 
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Ks 
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where Ii represents j^-nitrophenyl phosphate, I2, o-
nitrophenyl oxalate, and E, arylsulfate sulfohydrolase. 
Solution of eq 1 gives 

V [Eo] J 1 
-ku[h]t 

+ IW* 
(2) 

where [E0] = initial enzyme concentration, Ks is the 
dissociation constant for EI1, and ki2 is the second-order 
rate constant for oxalate inhibition. Values of ku = 
4.3 X 102 M - 1 min" 1 and Ks = 3.5 X 10~4 M were 
employed to calculate the solid lines of Figure 2. The 
increased protection afforded by higher concentrations 
of Ii at a given time is in accord with o-nitrophenyl 
oxalate reacting at the active site. Similar results were 
obtained in the presence of excess substrate, p-nitvo-
phenyl sulfate. 

The reaction of the oxalate ester with the enzyme 
occurs with an initial rapid exponential release of o-
nitrophenol followed by its slower liberation, the latter 
apparently due to both spontaneous hydrolysis and 
unspecified reaction with the protein. Since the differ­
ence in the two rate processes is a factor of ca. 16-fold 
at pH 4.8, the measurement of the burst may be accom­
plished by extrapolation of the initial O D values. The 
burst height O ) is directly proportional to enzyme con­
centration.6 '6 The results, listed in Table I, are in 
agreement with the data of Figure 1 and collectively 
imply but do not mandate an active site per subunit. 
It is noteworthy that ku calculated from the initial 
phase of o-nitrophenol release is 2.0 X 102 M - 1 m i n - 1 , 
a value ca. 5 0 % less than that deduced in the above ex­
periments at a lower I2 concentration. This discrepancy 
provides minimal evidence that eq 1 be expanded to 
include an EI2 complex formed prior to inactivation. 
The corresponding solution has a Ki1[In] term in both 
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Figure 2. Protection of arylsulfate sulfohydrolase II against in­
activation by o-nitrophenyl oxalate with p-nitrophenyl phosphate. 
o-Nitrophenyl oxalate, 3.3 X 1O-4 M; p-nitrophenyl phosphate, 
plot 1, 2.0 X 10'2 M; 2, 9.5 X 10"3 M; 3, 5.1 X IO"3 M. All 
solutions are in 0.4 M acetate buffer, pH 4.8, 25°; enzyme specific 
activity = 0.5 unit/mg.l 

Table I. Effect of Enzyme Concentration on the Reaction with 
o-Nitrophenyl Oxalate" 

[Enzyme] X 106 M ir/[enzyme] 

2.6 
1.1 

1.8 
1.8 

« [Inhibitor] = 1.1 X 10"3 M; [enzyme], specific activity 
0.7 unit/mg; 0.2 Macetate, pH 4.8, 25°. 

numerator and denominator so that the nonlinear de­
pendency of the observed rate constant on I2 concen­
tration is described. 

The discovery of this active-site titrant should ex­
pedite quantitative studies of the mechanism of action 
and active-site characterization of the arylsulfate sulfo-
hydrolases. 
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Chemistry of a-Alkoxy Sulfoxides. 
Formation of Methylene Acetals from 
Dimethyl Sulfoxide and Alcohols 

Sir: 

Among the large number of reactions undergone by 
D M S O 1 - 3 is its thermal decomposition, alone or cat-
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